Cover art for podcast Data Engineering Podcast

Data Engineering Podcast

122 EpisodesProduced by Tobias MaceyWebsite

Weekly deep dives on data management with the engineers and entrepreneurs who are shaping the industry


Simplifying Continuous Data Processing Using Stream Native Storage In Pravega with Tom Kaitchuck - Episode 63


As more companies and organizations are working to gain a real-time view of their business, they are increasingly turning to stream processing technologies to fullfill that need. However, the storage requirements for continuous, unbounded streams of data are markedly different than that of batch oriented workloads. To address this shortcoming the team at Dell EMC has created the open source Pravega project. In this episode Tom Kaitchuk explains how Pravega simplifies storage and processing of data streams, how it integrates with processing engines such as Flink, and the unique capabilities that it provides in the area of exactly once processing and transactions. And if you listen at approximately the half-way mark, you can hear as the hosts mind is blown by the possibilities of treating everything, including schema information, as a stream.

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. Go to today to get a $20 credit and launch a new server in under a minute.
  • Go to to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Join the community in the new Zulip chat workspace at
  • Your host is Tobias Macey and today I’m interviewing Tom Kaitchuck about Pravega, an open source data storage platform optimized for persistent streams
  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by explaining what Pravega is and the story behind it?
  • What are the use cases for Pravega and how does it fit into the data ecosystem?
    • How does it compare with systems such as Kafka and Pulsar for ingesting and persisting unbounded data?
  • How do you represent a stream on-disk?
    • What are the benefits of using this format for persisted streams?
  • One of the compelling aspects of Pravega is the automatic sharding and resource allocation for variations in data patterns. Can you describe how that operates and the benefits that it provides?
  • I am also intrigued by the automatic tiering of the persisted storage. How does that work and what options exist for managing the lifecycle of the data in the cluster?
  • For someone who wants to build an application on top of Pravega, what interfaces does it provide and what architectural patterns does it lend itself toward?
  • What are some of the unique system design patterns that are made possible by Pravega?
  • How is Pravega architected internally?
  • What is involved in integrating engines such as Spark, Flink, or Storm with Pravega?
  • A common challenge for streaming systems is exactly once semantics. How does Pravega approach that problem?
    • Does it have any special capabilities for simplifying processing of out-of-order events?
  • For someone planning a deployment of Pravega, what is involved in building and scaling a cluster?
    • What are some of the operational edge cases that users should be aware of?
  • What are some of the most interesting, useful, or challenging experiences that you have had while building Pravega?
  • What are some cases where you would recommend against using Pravega?
  • What is in store for the future of Pravega?
Contact Info Parting Question
  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Educational emoji reaction


Interesting emoji reaction


Funny emoji reaction


Agree emoji reaction


Love emoji reaction


Wow emoji reaction


Listen to Data Engineering Podcast


A free podcast app for iPhone and Android

  • User-created playlists and collections
  • Download episodes while on WiFi to listen without using mobile data
  • Stream podcast episodes without waiting for a download
  • Queue episodes to create a personal continuous playlist
RadioPublic on iOS and Android
Or by RSS
RSS feed

Connect with listeners

Podcasters use the RadioPublic listener relationship platform to build lasting connections with fans

Yes, let's begin connecting
Browser window

Find new listeners

  • A dedicated website for your podcast
  • Web embed players designed to convert visitors to listeners in the RadioPublic apps for iPhone and Android
Clicking mouse cursor

Understand your audience

  • Capture listener activity with affinity scores
  • Measure your promotional campaigns and integrate with Google and Facebook analytics
Graph of increasing value

Engage your fanbase

  • Deliver timely Calls To Action, including email acquistion for your mailing list
  • Share exactly the right moment in an episode via text, email, and social media
Icon of cellphone with money

Make money

  • Tip and transfer funds directly to podcastsers
  • Earn money for qualified plays in the RadioPublic apps with Paid Listens